L'une des choses les plus difficiles que les parents doivent faire en ce qui concerne la scolarité de leur enfant est de comprendre une nouvelle méthode d'apprentissage. Au fur et à mesure que la méthode mathématique de Singapour gagne en popularité, elle commence à être utilisée dans plus d'écoles à travers le pays, laissant plus de parents à comprendre en quoi consiste cette méthode. Un examen attentif de la philosophie et du cadre des mathématiques de Singapour peut faciliter la compréhension de ce qui se passe dans la classe de votre enfant.
Le cadre mathématique de Singapour
le cadre de Singapore Math est développé autour de l'idée que l'apprentissage de la résolution de problèmes et du développement de la pensée mathématique sont les facteurs clés pour réussir en mathématiques.
Le cadre stipule: «Le développement de la capacité de résolution de problèmes mathématiques dépend de cinq composantes interdépendantes, à savoir les concepts, les compétences, les processus, les attitudes et la métacognition
En examinant chaque composant individuellement, il est plus facile de comprendre comment ils s'emboîtent pour aider les enfants à acquérir des compétences qui peuvent les aider à résoudre des problèmes abstraits et réels.
1. Concepts
Lorsque les enfants apprennent des concepts mathématiques, ils explorent les idées des branches des mathématiques comme les nombres, la géométrie, l'algèbre, les statistiques et les probabilités, et l'analyse des données. Ils n'apprennent pas nécessairement à résoudre les problèmes ou les formules qui les accompagnent, mais acquièrent plutôt une compréhension approfondie de ce que toutes ces choses représentent et ressemblent.
Il est important que les enfants apprennent que tous les mathématiques fonctionnent ensemble et que, par exemple, n’est pas une opération autonome, elle continue et fait partie de tous les autres concepts mathématiques bien. Les concepts sont renforcés à l'aide de manipulateurs mathématiques et d'autres matériaux concrets pratiques.
2. Compétences
Une fois que les élèves ont une solide compréhension des concepts, il est temps de passer à l'apprentissage de l'utilisation de ces concepts. En d'autres termes, une fois que les élèves ont compris les idées, ils peuvent apprendre les procédures et les formules qui les accompagnent. De cette façon, les compétences sont ancrées aux concepts, ce qui permet aux étudiants de comprendre plus facilement pourquoi une procédure fonctionne.
En mathématiques à Singapour, les compétences ne se limitent pas à savoir comment travailler quelque chose avec un crayon et du papier, mais savoir également quels outils (calculatrice, outils de mesure, etc.) et quelle technologie peuvent être utilisés pour problème.
3. Processus
Le cadre explique que les processus «comprend le raisonnement, la communication et les connexions, les capacités de réflexion et l'heuristique, ainsi que l'application et la modélisation.”
- Raisonnement mathématique est la capacité d'examiner attentivement les situations mathématiques dans une variété de contextes différents et d'appliquer logiquement les compétences et les concepts pour résoudre la situation.
- la communication est la capacité d'utiliser de manière claire, concise et logique le langage mathématique pour expliquer des idées et des arguments mathématiques.
- Connexions est la capacité de voir comment les concepts mathématiques sont liés les uns aux autres, comment les mathématiques sont liées à d'autres domaines d'études et comment les mathématiques se rapportent à la vie réelle.
- Compétences de pensée et heuristique sont les compétences et les techniques qui peuvent être utilisées pour résoudre un problème. Les compétences de réflexion comprennent des choses comme le séquençage, la classification et l'identification des modèles. L'heuristique est une technique basée sur l'expérience qu'un enfant peut utiliser pour créer une représentation problème, faites une supposition éclairée, déterminez le processus pour résoudre un problème ou comment recadrer un problème. Par exemple, un enfant peut dessiner un graphique, essayer de deviner et de vérifier ou de résoudre des parties d'un problème. Ce sont toutes des techniques apprises.
- Application et modélisation est la capacité d'utiliser ce que vous avez appris sur la façon de résoudre les problèmes pour choisir les meilleures approches, outils et représentations pour une certaine situation. C'est le processus le plus compliqué et il faut beaucoup de pratique aux enfants pour créer des modèles mathématiques.
4. Attitudes
Les enfants sont ce qu’ils pensent et pensent des mathématiques. Les attitudes sont développées en fonction de leurs expériences d'apprentissage des mathématiques.
Ainsi, un enfant qui s'amuse tout en développant une bonne compréhension des concepts et en acquérant des compétences est plus susceptibles d'avoir des idées positives sur l'importance des mathématiques et la confiance dans sa capacité à résoudre problèmes.
5. Métacognition
La métacognition semble vraiment simple mais est plus difficile à développer que vous ne le pensez. Fondamentalement, la métacognition est la capacité de réfléchir à la façon dont vous pensez.
Pour les enfants, cela signifie non seulement être conscient de ce qu'ils pensent, mais aussi savoir contrôler ce qu'ils pensent. En mathématiques, la métacognition est étroitement liée à la capacité d'expliquer ce qui a été fait pour le résoudre, de penser de manière critique au fonctionnement du plan et de réfléchir à d'autres manières d'aborder le problème.
Le cadre de Singapore Math est certainement compliqué, mais il est aussi bien pensé et bien défini. Que vous soyez partisan de la méthode ou que vous n'en soyez pas si sûr, une meilleure compréhension de la philosophie est essentielle pour aider votre enfant en mathématiques.