Comment calculer le coefficient de corrélation

Il y a beaucoup de questions à se poser lorsque l'on regarde un nuage de points. L'une des plus courantes consiste à se demander dans quelle mesure une ligne droite se rapproche des données. Pour aider à répondre à cette question, il existe une statistique descriptive appelée coefficient de corrélation. Nous verrons comment calculer cette statistique.

Le coefficient de corrélation

le Coefficient de corrélation, dénoté par r, nous indique à quel point les données nuage de points tomber le long d'une ligne droite. Le plus proche la valeur absolue de r est à un, mieux les données sont décrites par une équation linéaire. Si r = 1 ou r = -1 alors l'ensemble de données est parfaitement aligné. Ensembles de données avec des valeurs de r près de zéro montrent peu ou pas de relation linéaire.

En raison des longs calculs, il est préférable de calculer r avec l'utilisation d'une calculatrice ou d'un logiciel statistique. Cependant, il est toujours utile de savoir ce que fait votre calculatrice lors du calcul. Ce qui suit est un processus de calcul du coefficient de corrélation principalement à la main, avec une calculatrice utilisée pour les étapes arithmétiques de routine.

instagram viewer

Étapes de calcul r

Nous commencerons par lister les étapes du calcul du coefficient de corrélation. Les données avec lesquelles nous travaillons sont données appariées, dont chaque paire sera désignée par (Xje, yje).

  1. Nous commençons par quelques calculs préliminaires. Les quantités issues de ces calculs seront utilisées dans les étapes suivantes de notre calcul de r:
    1. Calculez x̄, le signifier de toutes les premières coordonnées des données Xje.
    2. Calculer ȳ, la moyenne de toutes les secondes coordonnées des données
    3. yje.
    4. Calculer s X l'échantillon écart-type de toutes les premières coordonnées des données Xje.
    5. Calculer s y l'écart-type de l'échantillon de toutes les secondes coordonnées des données yje.
  2. Utilisez la formule (zX)je = (Xje - X) / s X et calculer une valeur normalisée pour chaque Xje.
  3. Utilisez la formule (zy)je = (yje – ȳ) / s y et calculer une valeur normalisée pour chaque yje.
  4. Multipliez les valeurs normalisées correspondantes: (zX)je(zy)je
  5. Ajoutez les produits de la dernière étape ensemble.
  6. Divisez la somme de l'étape précédente par n - 1, où n est le nombre total de points dans notre ensemble de données appariées. Le résultat de tout cela est le coefficient de corrélation r.

Ce processus n'est pas difficile et chaque étape est assez routinière, mais la collecte de toutes ces étapes est assez complexe. Le calcul de l'écart type est déjà assez fastidieux. Mais le calcul du coefficient de corrélation implique non seulement deux écarts types, mais une multitude d'autres opérations.

Un exemple

Pour voir exactement comment la valeur de r est obtenu, nous regardons un exemple. Encore une fois, il est important de noter que pour des applications pratiques, nous voudrions utiliser notre calculatrice ou logiciel statistique pour calculer r pour nous.

Nous commençons par une liste de données appariées: (1, 1), (2, 3), (4, 5), (5,7). La moyenne de la X valeurs, la moyenne de 1, 2, 4 et 5 est x̄ = 3. Nous avons aussi que ȳ = 4. L'écart type du

X valeurs est sX = 1,83 et sy = 2.58. Le tableau ci-dessous résume les autres calculs nécessaires pour r. La somme des produits dans la colonne la plus à droite est 2.969848. Puisqu'il y a un total de quatre points et 4 - 1 = 3, nous divisons la somme des produits par 3. Cela nous donne un coefficient de corrélation de r = 2.969848/3 = 0.989949.

Tableau pour l'exemple de calcul du coefficient de corrélation

X y zX zy zXzy
1 1 -1.09544503 -1.161894958 1.272792057
2 3 -0.547722515 -0.387298319 0.212132009
4 5 0.547722515 0.387298319 0.212132009
5 7 1.09544503 1.161894958 1.272792057